
MCR,89-590 D0L C Y
Technical Progress Page I of 7
OBP-80/Contract No. N00014.89-C2169 E E ' - .

AD-A224 618 as JUL2 , m
TO: ANDY FOX

FROM: S. ESPY

SUBJ: TECHNICAL PROGRESS FOR IDDGA - OBP UPGRADE

The following paragraphs describe progress that has been made since 5/15/90.

TOPIC I - MULTIPLIER DEVICE

The chip functionality has been defined by Martin Marietta. The foV:;ing poir.,. highlight
deviations from the baseline, as discussed with Alan Ross, and Ron Mocuy. .

It was previously noted that the FA adjust control and the RND control may both be
activated at the same time. When this occurs, both the Martin Marietta simulator
(SIMCPU) and the Analytyx instruction set simulator (CPUSIM) produce results not
consistent with the IDT device. It was determined that this mode is not useful for
current OBP software. Martin Marietta recommends that the OBP Programmers
Reference manual specify that the multiplier output be indeterminate when this
combination of controls is applied to the device. Ron Moody suggested that, for the
purposes of the OBP 80 multiplier design, we default to FA when both FA and RND
occur. We are analyzing this change at present.

In last months status memo, we documented that all Control Register bit fail flags
would be read out on the source bus. This was considered to be desirable since a
diagnostic program could determine the functionality of the majority vote registers. We
had previously baselined a decode of OE as the Source bus decode for Control Register
3. To allow the bitfail flags to be read instead of the data, we need to provide a
method of placing the device in 'test mode'. Then, when the machine instruction MOV
CNTL3, RI is issued, the bitfail flags associated with CNTL3 are connected to the
source bus instead of the data.

To command the device to enter test mode, we had baselined IMR[15:13]. These bits
were not defined in the current architecture. The MPY device was to have entered test
mode only if all three upper bits of the IMR were set to '1'. This had the unfortunate
side effect of limiting future expansion of interrupts to 13 total. Alan Ross suggested
that an alternative method be found. We compromized by assigning a Test Register to
Destination Bus decode 18H. Wten this register is loaded with all l's in the top three
bits, the MPY device enters test mode.

TOPIC 2 - ALU DEVICE

Approved toy pubhc telecast
Distributiom Unimted

Martin Marietta Space System.% Revised: 26 Jun 90Martn Mrieta Sace; ... 0 . ' " 3 "

Technical Progress Page 2 or 7
OBP-80/Contract No. N00014-89-C2169

CD

Figure 1 Single ALU Block Diagram

Martin Marietta Space Systems Revised: 26 Jun 90

Technical Progress Page 3 or 7
OBP-80/Contract No. N00014-89-C2169

The run closing date for the Arithmetic Logic Unit is 9/30/90. Since this date is rapidly
approaching, discussions were held regarding its design at the June TIM at Analytyx. The
following items should be noted:

A: The ALU is actually a twin ALU. Two 16 bit 49C402 ALU's are incorporated into a single
device. These ALU's are independent of each other. Since the current OBP architecture does
not support two complete ALU's, it is necessary to decode the microword. The working
definition of this decode is shown in Figure 2. "

Extended SBI Definition Current SBI Definition
15 8 T 1 0 15 0

wwU u W [VJ WI
S M< < I2's Complement Data:~~~6 1< <P1 <_____

To ALU Control To Source Bus To Source Bus

DAL DALU Auto-increment

AAI: AALU Auto-increment

AAAE: AALU A Address Extended

AABE: AALU B Address Extended

AIFE: AALU Instruction Function Extended

AIDE: AALU Instruction Destination Extended

ASIE AALU Shift Select Extended

ACIE: AALU Carry Select Extended

Figure 2 SBI Field Microword Extensions

The figure shows that the Source Bus Immediate (SBI) field has been re-defined to supply the
added control fields for the Address ALU. These include the remaining bits of the 49C402
instruction field, the register pointer field, and the shift and carry control fields. Since it is
still necessary to use the SBI field to inject 16 bits of immediate data into the processor, these
extended mode definitions will only be available when a concurrency conflict does not exist.

The extended mode functions will only be available if CNTL3, bit 5 = 1. This bit is intended
to be loaded at 'Boot Time'. It enables the extended decoding circuitry in the VLSI circuits. If
this bit is not set, the OBP-80 will not recognize the extended definition. If it is set, the
decoding circuitry will examine the Source Bus Select (SBS) field. If the current microword is

Martin Marietta Space Systems Revised: 26 Jun 90

Technical Progress Page 4 of 7
OBP-80/Contract No. N00014-89-C2169

using the immediate field to inject data (SBS=6) with the SBI field, the decoding circuitry
will not recognize the extended definition.

NOTE: These extended operations will require a modification to the OBP assembler to
support. This is necessary since any attempt to specify the value of this field at assembly time
will result in a concurrency conflict.

B: The ALU condition code generation has been specified by the OBP Programmers Refernce
Manual (Document N70425/OB87A014-03C). Section 2.3.2 of this document states: "The
Carry flag and the Overflow flag are always reset by a logical operation." This is traditional,
and dates back to the design of the original 2901/GPU by AMD/RCA. It is usually true that
these condition codes contain no useful information for programmers.

Unfortunately, the current 'as built' OBP does not currently work as described in the
Programmers Reference Manual. The 1988 version of the Integrated Device Technology Data
Book (pg 8-5) specifies why this is so. For ease of physical design, the IDT designers
constructed an ALU which performs logic and arithmetic operations together. This means that
the carry and overflow flag generation logic always interprets the ALU results as arithmetic.
To disable the flags under logic operation would have slowed the ALU critical path.

To work around this problem, Tania Fort has created an OBP flight diagnostic program which
checks for condition codes as the IDT device produces them. For the OBP 80 ALU design, we
have elected to go with a 'segmented ALU'. That is, the ALU is composed of separate blocks
which perform arithmetic, logic, and shift operations. We chose this approach to maximize the
speed of the ALU. Unfortunately, in this design the critical path slows down with the addition
of logic to make the Carry and Overflow flags behave like the current system.

A block diagram of the ALU circuit macrocell is shown in Figure 3. This separation of
functions is done to allow optimum performance in the arithmetic path, as it is unburdened
from the task of performing other operations affecting the carry path. Therefore, when a logical
operation occurs in the OBP-80 ALU design, it does not pass through the circuitry which
produces the arithmetic condition codes.

The net result of this is the OBP-80 will be fully compliant with the current revision of the
OBP Programmers Reference Manual where logical operations are concerned. However, we
will still FAIL the diagnostic program which tests for condtion codes as they are produced by
the current OBP hardware. This will need to be changed for the OBP 80 effort.

The Martin Marietta VLSI Design Lab STRONGLY RECOMMENDS that the "IDT ALU
specific" operations not be allowed to creep into the specification for the OBP.

Martin Marietta Space Systems Revised: 26 Jun 90

Technical Progress Page 5 of 7

OBP-80/Contract No. N00014-89-C2169

CD

a:

---a

GJJ-Z cDI

D L3 CC) _ DS-0 U)

Figure 3 ALU Circuit Block Diagram

Martin Marietta Space Systems Revised: 26 Jun 90

Technical Progress Page 6 of 7
OBP-80/Contract No. N00014-89-C2169

C: Several enhancements were proposed for controlling the the register portion of the ALU. In
general, this is a good idea since both application execution speed and code compression can
be achieved. Consider the situation where an interrupt occurs (or some other machine
exception condition) and the machine state must be saved. It is desirable to save the OBP
machine state as completely as possible, since the programmer has access to 100% of the
machine resources. Since no registers are 'hidden' from the appication programmer, whatever
resources are not saved cannot be used by the interrupt handler.

Figure 4 indicates that the only way to accomplish the saving of the machine resources is both
cumbersome and inefficient. Since the microword field must explicitly specify the register to
be saved, the code required to 'save the world' is enormous. To save the complete state of a
single ALU requires 64 microwords.

Adding a simple register and incrementer to each of the pointer fields allows the code to be
reduced substantially. For instance, a loop coonstruct could be used:

LOOPTOP>

WRDMO ; write memory &

/ MOV RB+, DMODW ; move 'B' side Reg to buffer, add I to pointer

/ SUBA %X0001, ARO, ARO, DMOA ;Decrement counter

/ BRT ZERO, LOOPTOP

7) ------;---- -i --- --- -------------------------------71 , Got................:........
7d lGst rt-69111 lM-5 l r U .thn trimfle I eo"4/qjclo

7S
?. 6863 682I 4900 070 li"I 8244 007000 0 1KX 00:no660 :he1e ltet address Of 0SOaC
7 04" 025 000 446 0011 6244 0OW 09 6 000 It". 006 :b o t W 1 de dritS b r~ .
1IW 0042 "S6 4000 OQOG 0244 6049 0000 l00 06a0e o vte'. up finiotif, , overtep to4

to
01 O W84 082 NO 4540 619 244 lW 9061 woo6 ;w'ie the cuJI1'Ut 6000 1
62 / R0 !!6. :~ next owe to "to Witt buffer 9

23 / 680h '001I.O0 ;,,,t0...t the tuWtUM eoOrss.
64

05 SW07 "GO 4540 6802 3244 160 061, 600O
I I / 0 t2,.0490t0
07 / 00C 82 Z*06O1 .660.680,0606
66

1 OM4 02 0000 440 MSX 0244 LO6 6OO 1140

:2
293 682 002 86M 454606NY 6244 1000 001 06066O

94 "Y #)0.0661 t

17 STOPTAG)
$O

50OW 06 00W SW 60 0 244 1492 6006 3p 519P7-6
100 86 10026 OO 008 O 6N S 244 00M 0 49 6

102 Put lint to Oct 0 T .

164 91110 98" 0004 9668000 6600 ow t" A

...10TOL4. SEMLY 166005: 6

Figure 4 Screen Dump Of Current World Save

Martin Marietta Space Systems Revised: 26 Jun 90

Technical Progress Page 7 of 7
OBP-80/Contract No. N00014-89-C2169

It was also suggested that a RAM bank be placed in the register field to allow mapping banks
of registers. For example, the flight supervisor could initialize the RAM so that task programs
would have access to 16 or perhaps 32 of the ALU registers. Achieving a context swith would
be much simpler, since the interrupt handler routine could have access to the 32 registers
normally hidden from the user.

Both of these ideas are under consideration, and need to be addressed at the PDR on 7/24/90.

If you have any comments or questions regarding this memo, please call me at (303) 971-9276.

Steve Espy

t(: TA;:

A :77 ! /

STAT12-NE "A" Per Andrew Fox
NRL/Code 8120
TELECON 7/26/90 VG

Martin Marietta Space Systems Revised: 26 Jun 90

